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ABSTRACT

Among the various nectar sources in the �eld, honey bees are believed to selectively

forage from the most pro�table sources through a self-organizing process, wherein all bees

eventually forage only at the most pro�table source leaving not a single individual to

forage at the less pro�table site. We show that a self-organizing process not only selects

sources, which are not necessarily the most pro�table, but also distributes foragers among

them. Each individual forager estimates a time-independent quantity for the nectar

source she visits and follows a set of simple behavioral rules. The quantity is called the

source `value'. Once the source values are estimated by the foragers, self-organization

takes over to manage the colony's decision making process. At steady state all foragers

distribute themselves among a subset of sources whose `values' are equal and higher than

all sources not belonging to the subset. Through self-organization the colony collectively

decides on selecting nectar sources and appropriately distributing its foragers.
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1. Introduction

When 
owers are in bloom the bees forage at the

various nectar providing sources available in the �eld.

The survival and prosperity of the colony depends

on how they can choose among the available nec-

tar sources, and how they can distribute the foragers

among them. In the absence of a central authority,

the bees have to collectively make this decision. Each

bee is known to communicate the coordinates of her

nectar source through the waggle dance (von Frisch

1967) to a few unemployed foragers that closely follow

her dance. She does not visit each available source in

the �eld to compare the pro�tability of the sources,

nor do the dance followers compare all the dances to

choose the best source (Seeley & Towne 1992). Each

forager visits a source, collects nectar, returns to her

hive and advertises her source to a few follower bees.

Each unemployed forager follows just one dance, cho-

sen more or less at random, before she leaves the hive

in search of the forage site she was informed about.

With this limited communication, the colony is faced

with a challenge of deciding which sources should be

foraged and how best to distribute its foragers be-

tween the selected sources.

The process by which the bees deploy the foragers

is believed to be self-organization, wherein a set of

simple behavioral rules could describe the colony's de-

cision making process (Seeley et al. 1991, Camazine

& Sneyd 1991). This model, hereafter called the SCS

model, is based essentially on the following three sim-

ple rules: (1) On return from the source, after for-

aging, the bee unloads the nectar. Then, she either

immediately resumes foraging, or resumes foraging af-

ter dancing, or simply abandons the source. Each

of these di�erent choices is made with a probability

f

d

(1 � f

x

); f

d

, and f

x

respectively; where f

d

is the

probability with which the bee would dance for the

source, and f

x

is the probability with which she would

abandon the source. (2) The duration � for which the

dancer dances for her source is determined by a gauge

of source pro�tability P carried by each forager (See-

ley 1994). (3) The deserters assemble on the following


oor f , to follow the dancers. Here each unemployed

forager chooses the next source that she would forage.

The probability of an individual to choose a source

among the various advertised sources f

i

f

depends on

the duration each dancer dances for her source, and

the number of dancers on the dance 
oor d

i

.

These rules when expressed mathematically show

how the number of foragers at each nectar source

evolves with time depending on a set of parameters

like the aforementioned three probabilities (f

d

; f

x

; f

f

)

and the time each forager spends (i) at the source,

or foraging 
oor (T

a

= 1=p

a

), (ii) on the dancing


oor (T

d

= 1=p

d

), and (iii) on the following 
oor

(T

f

= 1=p

f

). The choosing probability f

f

is a

function of the dance duration � and the instanta-

neous number of dancers d

i

. All other parameters

are time-independent and are believed to be either

determined by some internal gauge by each individ-

ual bee, or is measured by each bee. Knowing these

6m + 1 input-parameters (f

i

x

; f

i

d

; �

i

; p

ai

; p

di

; p

hi

; p

f

),

where i = 1; 2; :::;m, for the m sources in the �eld

and 3m + 1 initial values (a

i

; d

i

; h

i

; f), the system of

equations in the SCS model describe how an initial

distribution of foragers (a

10

; a

20

; :::; a

m0

) evolves over

time. At steady state the equations allow an `all or

none' distribution, wherein all foragers abandon the

less pro�table source among the two available ones in

the �eld and congregate at the more pro�table one.

The self-organizing process very accurately de-

scribes the experimental results of Seeley et al. (1991)

where all foragers converged onto the most pro�table

source, thus abandoning the less pro�table one. How-

ever, a colony not only selects the most pro�table for-

aging site, but is known to distribute foragers among

nectar sources with di�erent pro�tabilities (Bartholdi

et al. 1993). How do the bees manage this di�cult de-

cision making process? Bartholdi et al. (1993) claim

that each bee accumulates a quantity called the `equal

value' for each source. Through the equal value hy-

pothesis they show that there exists no other alloca-

tion that can bring a value more than twice as quickly

as the equal value rate allocation.

Here we modify the SCS model to achieve not only

the selection of the nectar sources among the avail-

able ones in the �eld, but also the distribution of the

foragers among the selected sources. The modi�ca-

tion simpli�es the set of equations to the bare essen-

tials, reducing the number of input-parameters from

6m + 1 to 5m (f

i

x

; f

i

d

; �

i

; p

ai

; p

di

), and the total num-

ber of di�erential equations from 3m + 1 to m. The

modi�cation is two fold: (i) any arbitrary variation of

the total number of available foragers N is allowed.

Hence, N is a function of time, and this variation

is directly incorporated into the equations. (ii) A

hypothesis called the `no-accumulation hypothesis' is

introduced, whereby it is assumed that there is no ac-

cumulation or depletion of foragers at the unloading,
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dancing and following compartments. Accumulation

could reduce the foraging e�ciency. Instead of accu-

mulating, the foragers can as well look for other tasks

in the colony. Looking for other tasks implies aban-

doning foraging which is conveniently incorporated in

the temporal variation of N . Depletion of foragers

at these three compartments can also a�ect the com-

munication system between the dancers and follow-

ers, which in turn can a�ect the self-organizing pro-

cess and thereby the foraging e�ciency. For example,

zero dancers makes the choosing probability indeter-

minate and all foraging is abandoned. Under the `no-

accumulation hypothesis' the total number of foragers

available is equal to the total number of foragers at all

the m nectar sources N =

P

m

i=1;m

a

i

; where a

i

is the

number of foragers at the ith source. The SCS model

is modi�ed, and the notation changed, so as to make

it easier to deal with any number of sources. The

modi�ed SCS equations are presented in section (2),

with the �rst modi�cation in sub-section (2.1). The

no-accumulation hypothesis is then applied and the

resulting equations described in sub-section (2.2).

The no-accumulation hypothesis allows the system

of equations to be solved analytically even in a com-

plicated evolving N scenario. This provides an in-

sight into the mechanism of the self-organizing pro-

cess. The equations provide a key quantity which we

call the `value' following the tradition set by Bartholdi

et al. (1993). The value is somewhat similar to their

value. This value is a function of a subset of the input-

parameters that varies from source to source and is

assigned or estimated by the forager for each source

she visits; v = v(f

x

; f

d

; �; p

d

). Unlike the Bartholdi et

al. (1993) assumption that the value for each source

is accumulated by the foragers, the value here is de-

termined by each forager and is time-independent.

The analytic solutions (section 3) show that if two

sources have unequal values then the steady state so-

lutions is an `all or none' distribution, with all the

foragers eventually foraging at the source with the

higher value, leaving no foragers at the lesser valued

source. If the values are equal then the available for-

agers distribute themselves between the two sources.

Hence the self-organizing process does not necessarily

select the most pro�table among two sources.

Analytical solutions are studied in one simple case

for a three source model (section 4). The source with

the highest value is shown to be selected through self-

organization. If two of the three sources have a value

equal to each other and higher than the third, then

the third source is abandoned and the foragers dis-

tribute themselves between the two sources with equal

value. The equations can be solved numerically for

any number of sources if the initial values are pro-

vided. These initial values and distributions can be

obtained from experiments.

We use the experimental data in section (5) from

two speci�c experiments, Seeley et al. 1991 and Bartholdi

et al. 1993, and show that the evolution of the distri-

bution can be accurately explained in both cases. The

bees abandon the lesser valued source for the highest

valued in the experiment of Seeley et al. 1991, here

the higher valued source is also the most pro�table.

In the Bartholdi et al. (1993) experiment, the bees

distribute themselves between the two equal valued

sources whose pro�tabilities are not identical. The

two experiments can be explained not only under the

assumption that there are only two available sources

in the �eld, but also under the assumption that there

are an arbitrary number of sources in the �eld, which

is a realistic case.

Each individual forager determines the value of the

source. Once the value of the source is determined,

the self-organizing process selects the sources and dis-

tributes the foragers among the highest equal valued

sources. The value of the source v = v(f

x

; f

d

; �; p

d

),

is time-independent if the input-parameters are time-

independent. If the pro�tability of the source varies

with time, which is bound to happen with �nite re-

sources and competition at the nectar source, then

the value too can vary with time. Given a time-

dependent value the hive is known to adjust the num-

ber of foragers in real time: the number of foragers

at two equally pro�table sources remains almost the

same until the pro�tability of one of them is dou-

bled, when the hive was shown to increase the for-

agers at the more pro�table source while simulta-

neously decreasing its foragers at the other (Seeley

1995; section 5.13). Seeley called this phenomenon

cross-inhibition. In section (6) we show that cross-

inhibition between forager groups is simply a con-

sequence of the change in value of the source when

the pro�tability is changed. When the pro�tability

was equal the values of the sources were equal, and

the number of foragers remained more or less the

same. When the pro�tability of one of the sources

was doubled its value doubled. The immediate con-

sequence of unequal values is to send all the foragers

to the higher valued source while reducing the for-

agers at the lower valued one. Self-organization nat-
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urally explains cross-inhibition. Thus, the modi�ed

SCS model of self organization accurately describes

how the hive collectively makes the decision of se-

lection of the nectar sources and distribution of its

foragers.

2. The Modi�ed SCS model

We rewrite the Seeley-Camazine-Sneyd model in a

\generalized" notation with two important modi�ca-

tions: (a) Evolution of the total number of available

foragers is introduced in sub-section (2.1), (b) A `No-

accumulation hypothesis' is explained and introduced

sub-section (2.2).

2.1. Non-conservation of N

The total number of available foragers N can

change with time. The number of committed foragers

can be increased via the shaking signal (von Frisch

1967, see Seeley 1995 section 6.2 for a list of other ref-

erences). The shaken nonforagers and even the young

10 to 14 day old bees are known to be coaxed into en-

tering the following 
oor to start foraging (Schneider

et al. 1986). The e�ect of such shaking recruitment

is to add to the number of followers f and e�ectively

increase the total number of committed foragers N .

The SCS model equations (A.1) become

da

i

dt

= (1 � f

i

x

)(1 � f

i

d

)p

hi

h

i

+ p

di

d

i

+ f

i

f

p

f

f (1)

�p

ai

a

i

;

dd

i

dt

= f

i

d

(1� f

i

x

)p

hi

h

i

� p

di

d

i

; (2)

dh

i

dt

= p

ai

a

i

� p

hi

h

i

; (3)

df

dt

=

m

X

j=1

f

j

x

p

hj

h

j

� p

f

f +

dN

dt

; (4)

where `i' refers to the ith nectar source, a, d, h and

f refer to the four di�erent compartments of the ith

nectar source, dancing 
oor, unloading 
oor and fol-

lowing 
oor, respectively. The number of bees at the

ith nectar source is a

i

, the number dancing for source

i is d

i

, number unloading for source i is h

i

and the

number following the dancers is f . The average rate

at which the foragers depart from the compartment y

is p

y

, whose inverse gives the time the forager spends

in y; T

y

= 1=p

y

. The abandonment probability is f

x

,

the dancing probability is f

d

and choosing probability

is f

f

which is de�ned as

f

i

f

=

�

i

d

i

P

m

j=1

�

j

d

j

; (5)

where �

i

is the duration of the dance, which is a frac-

tion of the time spent by the dancer on the dancing


oor T

di

= 1=p

di

and is a linear function of pro�tabil-

ity of the nectar source (Seeley 1994). The total num-

ber of foragers is N . The choice of f

i

f

is not unique.

If the followers sampled n di�erent dancers, then the

choosing probability for the ith source would be (f

i

f

)

n

(Camazine & Sneyd 1991). However, it was conclu-

sively shown (by Seeley & Towne 1992) that bees do

not compare dances.

Equations (1)-(4) satisfy the relation

d

dt

2

4

m

X

j=1

(a

j

+ d

j

+ h

j

) + f

3

5

=

dN

dt

: (6)

The �rst modi�cation from the original SCS model

is in the last term dN=dt in equation (4) which al-

lows any functional form for N , including the one (in

Camazine & Sneyd 1991) which exponentially grows

from an initial value of N

�

to an asymptotic value of

N

tot

with a time constant 1=k such that

dN

dt

= k(N

tot

� N ); (7)

where the solution for N is

N = N

tot

+ (N

�

� N

tot

) exp (�kt): (8)

It is emphasized that any functional form of N is

equally valid for the analysis that follows.

2.2. The `No-Accumulation Hypothesis'

The `no-accumulation hypothesis' assumes that

there is no accumulation or depletion of the number of

bees in compartments d, h and f . Under this hypoth-

esis the system of equations (1)-(5) yield analytical

solutions. Mathematically, the hypothesis introduces

the conditions that the time derivative of d

i

, h

i

and

f are zero,

dd

i

dt

= 0 =

dh

i

dt

=

df

dt

: (9)

In equations (2)-(4) we have,

p

di

d

i

= f

i

d

(1� f

i

x

)p

hi

h

i

;

p

hi

h

i

= p

ai

a

i

;

p

f

f =

m

X

j=1

f

j

x

p

hj

h

j

+

dN

dt

: (10)
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Hence, equations (1) and (10) together give the mod-

i�ed SCS model equations

da

i

dt

= f

i

f

0

@

dN

dt

�

m

X

j=1

f

j

x

p

aj

a

j

1

A

� f

i

x

p

ai

a

i

; (11)

and the choosing probability of equation (5) becomes

f

i

f

=

�

i

f

i

d

(1 � f

i

x

)(p

ai

=p

di

)a

i

P

m

j=1

�

j

f

j

d

(1 � f

j

x

)(p

aj

=p

dj

)a

j

: (12)

The input-parameters p

hi

and p

f

drop out. The

e�ect of the rate at which the bees leave the following

compartment would indirectly appear in the way the

total number of bees evolve. However, its interest-

ing to note that the self-organizing process must not

be dependent on the rate at which the bees leave the

unloading 
oor. Perhaps, the time spent on the un-

loading 
oor T

hi

, on average, must be independent of

the source. This could be because if the total search

time, which is T

h

, exceeds a certain level (roughly 50s)

tremble dances are triggered (Seeley 1992, Kirchner

& Lindauer 1994) through which the colony boosts

its nectar processing rate by boosting the number of

food storers.

The choosing probability could be de�ned di�er-

ently than in equation (5), yet the general form of

equation (12) will be

f

i

f

=

x

i

a

i

P

m

j=1

x

j

a

j

; (13)

where x

i

is a function of the probabilities and mean

rates of departures from the compartments. Equa-

tions (11) can be recast as

da

i

dt

=

"

x

i

P

m

j=1

x

j

a

j

dN

dt

+ x

i

V � y

i

#

a

i

; (14)

where V =

P

m

j=1

y

j

a

j

=

P

m

j=1

x

j

a

j

, and y

i

= f

i

x

p

ai

.

The set of m equations (14) describe the time evolu-

tion of an initial distribution of foragers (a

1

; a

2

; :::; a

m

)

when the input-parameters x

i

and y

i

are given. The

equations can be numerically solved for any number of

sources, and analytically solved when the number of

sources is limited; m = 2; 3. The two source model is

solved analytically in the next section, and a speci�c

case is solved for a three source model in section (4).

3. Analytic Solutions for a Two Nectar Source

Model

In the presence of 2 nectar sources the SCS model

shows that the only choice of forager distribution in

the steady state is an `all or none' distribution. The

evolution of the forager distribution to the steady

state can be traced for the modi�ed SCS model de-

scribed by equation (14) by obtaining analytic solu-

tions. The `all or none' steady state distribution is

shown to be the consequence of unequal values as-

signed by the individual forager to the nectar sources,

and all the foragers eventually forage at the source

with the highest value, thus abandoning the source

with a lesser value. The value of a source is de�ned

by a quantity v

i

= x

i

=y

i

, where y

i

= f

i

x

p

ai

and x

i

depends on the choice of the choosing probability f

i

f

.

The value is made up of parameters which are evalu-

ated by each individual forager. The choosing prob-

ability in equation (12) gives the value expression to

be of the form

v

i

=

�

i

f

i

d

(1� f

i

x

)(p

ai

=p

di

)

f

i

x

p

ai

: (15)

In a two nectar source model, equations (14) be-

come

da

1

dt

=

x

1

a

1

x

1

a

1

+ x

2

a

2

�

dN

dt

+ y

1

a

1

+ y

2

a

2

�

(16)

�y

1

a

1

;

da

2

dt

=

x

2

a

2

x

1

a

1

+ x

2

a

2

�

dN

dt

+ y

1

a

1

+ y

2

a

2

�

(17)

�y

2

a

2

:

Take x

2

= �x

1

and y

2

= �y

1

to represent v

1

=

(�=�)v

2

; � and � are constants. The total number

of available foragers at any time N = a

1

+ a

2

. So, its

su�cient to solve for either a

1

or a

2

. For a

1

, equa-

tion (16) becomes

da

1

dt

=

a

1

(1 � �)a

1

+ �N

�

dN

dt

+ y

1

(�� �)(N � a

1

)

�

;

(18)

whose solution can be shown to satisfy the equation

a

�

1

(N

�

�a

10

) exp[(���)y

1

t]+a

1

a

�

10

�Na

�

10

= 0; (19)

where a

10

is the initial value of a

1

.

The solution can be studied for di�erent condi-

tions. (a) If a

10

= N

�

then equation (19) admits

the only solution a

1

= N , provided a

10

6= 0, leaving
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the forager distribution to be (a

1

; a

2

) � (N; 0). On

the other hand if a

10

= 0 then the only solution is

a

1

= 0, with the forager distribution (0; N ). This

merely points out the fact that the forager distribu-

tion cannot increase from a value of zero. Atleast

one forager has to visit the nectar source before its

foragability is placed on the decision making 
oor.

(b) When the values are equal v

1

= v

2

, that is

when � = �. The equation (19) simpli�es to

a

�

1

(N

�

� a

10

) + a

1

a

�

10

� Na

�

10

= 0; (20)

showing that, a

1

evolves with time if N does. How-

ever, if N does not evolve with time (N = N

�

), then

a

1

= a

10

is the only solution. When the values are

equal, the initial distribution does not evolve with

time unless N itself is time dependent.

Equation (20) can be solved numerically for any

value of �. In atleast three special cases (� = 0; 1

and 2) the solutions of equation (20) are

� = 0 ) a

1

= N � (N

�

� a

10

); (21)

� = 1 ) a

1

=

N

N

�

a

10

; (22)

� = 2 ) a

1

=

a

2

10

2(N

�

� a

10

)

(23)

�

"

�1 +

s

1 +

4N

a

2

10

(N

�

� a

10

)

#

:

The steady state solutions in these special cases are

obtained by taking limits as t ! 1 and the other

time varying quantity N asymptotically goes to N

tot

.

For � = 2 and an initial distribution (a

10

; a

20

) �

(0:5N

�

; 0:5N

�

) the steady state solution is

lim

t!1

a

1

=

a

10

2

"

�1 +

r

1 +

4N

tot

a

10

#

; (24)

where lim

t!1

N = N

tot

. If N

tot

= 0, (a

1

; a

2

) !

(0; 0). If N

tot

= 2a

10

, (a

1

; a

2

) ! (a

10

; a

20

). However,

it should be noted that N

tot

= 2a

10

does not neces-

sarily imply that N is independent of time, N could

evolve with time giving an asymptotic value equal to

the initial value N

�

.

An interesting situation is N

tot

= 6a

10

. Equa-

tion (24) shows that (a

1

; a

2

) ! (2a

10

; 4a

10

). With

a

10

= 10 the initial distribution (10; 10) evolves to the

non-zero steady state distribution of (20; 40). This

closely matches the experimental result in Bartholdi

Fig. 1.| An initial distribution of (a

10

; a

20

) �

(10; 10) foragers are evolved upto 4 hr for two nectar

sources with equal values v

1

= v

2

, for di�erent values

of � = �, where x

2

= �x

1

, and y

2

= �y

1

; v

i

= x

i

=y

i

.

The steady state distribution lim

t!1

(a

1

; a

2

) is plot-

ted against � = �, dotted line represents lim

t!1

a

1

and dashed line, lim

t!1

a

2

. The source whose x

i

is

larger (equivalently, whose y

i

is larger) gets the larger

share of foragers.

et al. (1993), where a mean initial distribution of

(10; 10) evolves to (20:9 � 0:8; 39:0� 2:2). Later we

shall solve equation (18) with the experimentally ob-

served parameters of � and � and trace the evolution

of the distribution with time.

The steady state solution can be computed numer-

ically for any � = �. For an initial distribution of

(10; 10) with N

�

= 20 which evolves to a steady state

asymptotic total value of N

tot

= 60 equations (14)

can be solved numerically until the initial distribu-

tion reaches an asymptotic value lim

t!1

(a

1

; a

2

). The

total number of foragers N reaches its asymptotic

value N

tot

= 60 in roughly 3 hours when k = 2.

The steady state distribution lim

t!1

(a

1

; a

2

) is plot-

ted in �gure (1) for the di�erent values of � = �. The

dotted line traces lim

t!1

a

1

and dashed line traces

lim

t!1

a

2

. The steady state distribution depends on

the value of � = �. When � = � = 2 the steady state

values are (20; 40). The source with the larger of the

two x

i

, or equivalently y

i

, is the source that has the

6



larger number of foragers among the two sources.

(c) When the values are not equal; v

1

> v

2

, i.e.

� > �. At the limit of t ! 1 equation (19) yields

a

1

= N as the solution if a

10

6= 0. Any non-zero

initial distribution (a

10

; a

20

) ! (N; 0). Similarly, for

v

1

< v

2

, or � < �, at the limit of t ! 1 equa-

tion (19) admits the only solution a

1

= 0. That is,

(a

10

; a

20

) ! (0; N ). Hence, when v

1

6= v

2

the only

solutions admitted are (N; 0) or (0; N ), depending on

whether v

1

> v

2

or v

1

< v

2

. The source with the

higher value is selected.

There are two general analytic solutions of equa-

tion (19) for arbitrary � that are of interest. That is,

when � = 1

a

1

=

Na

10

a

10

+ (N

�

� a

10

) exp[(1� �)y

1

t]

; (25)

and when � = 2,

a

1

=

a

2

10

2(N

�

� a

10

) exp[(2� �)y

1

t]

(26)

�

"

�1 +

s

1 +

4N

a

2

10

(N

�

� a

10

) exp[(2� �)y

1

t]

#

:

We have thus shown that in the case of two nec-

tar sources the self-organizing process chooses the one

whose value is the highest, so that at steady state all

the foragers forage only at the source with the high-

est value. How does the hive distribute the foragers

among a large number of nectar sources available in

the �eld? The self-organizing process converges on

sending all the foragers to the sources with the maxi-

mum value. If m

1

out of the m available sources have

an equal value higher than the rest ofm�m

1

sources,

then at steady state all the foragers distribute them-

selves between the m

1

sources, thus abandoning the

m �m

1

sources with a lower value. In the next sec-

tion we demonstrate it by deriving analytic solutions

when m = 3 and m

1

= 2, and in the subsequent sec-

tion we numerically solve the di�erential equations for

m = 10 and m

1

= 4.

4. Analytic Solutions for a Three Nectar Source

Model

In the presence of three nectar sources, two of

which have the same value v

2

= v

3

, foragers will

choose either the �rst source with value v

1

, or the

two equal valued sources, depending on which of them

has a higher value. If v

2

= v

3

> v

1

, then the foragers

will abandon source 1, and all of them will distribute

themselves between source 2 and source 3. On the

other hand, if v

2

= v

3

< v

1

, then the foragers will

abandon the sources 2 and 3, and converge onto the

�rst source.

We choose a case where v

1

= (�=�)v

2

= (�=�)v

3

,

with x

2

= x

3

= �x

1

and y

2

= y

3

= �y

1

. For i = 1

equation (14) takes a form identical to equation (18)

yielding solutions satisfying an equation identical to

equation (19). For v

1

> v

2

(i.e. � > �), lim

t!1

a

1

=

N and lim

t!1

(a

2

+ a

3

) = 0, or, (a

10

; a

20

; a

30

) !

(N; 0; 0); sources 2 and 3 are abandoned. For v

1

< v

2

,

on the other hand, lim

t!1

a

1

= 0 and lim

t!1

(a

2

+

a

3

) = N . In the general case, to get the distribution

(a

2

; a

3

) we solve for a

2

. For i = 2, equation (14) takes

the form

da

2

dt

=

a

2

(1 � �)a

1

+ �N

�

�

dN

dt

+ y

1

(� � �)a

1

�

;

(27)

where a

1

is given by equation (19); the equation is

identical in form for i = 3. Solving equation (27)

gives

a

2

= a

20

exp

�

Z

t

0

A(t)dt

�

; (28)

where

A(t) =

1

(1� �)a

1

+ �N

�

�

dN

dt

+ y

1

(� � �)a

1

�

:

(29)

An example of the solution for � = 1 6= � is

a

1

=

Na

10

a

10

+ (N

�

� a

10

) exp[(1� �)y

1

t]

; (30)

a

2

=

Na

20

N

�

+ a

10

fexp[(�� 1)y

1

t]� 1g

; (31)

a

3

=

Na

30

N

�

+ a

10

fexp[(�� 1)y

1

t]� 1g

; (32)

where (a

10

; a

20

; a

30

) is the initial forager distribution.

The steady state distributions are

� < � = 1 )

�

0;

N

tot

a

20

N

�

� a

10

;

N

tot

a

30

N

�

� a

10

�

; (33)

� > � = 1 ) (N

tot

; 0; 0): (34)

The steady state values are given by lim

t!1

(a

1

; a

2

; a

3

)

of equations (30)-(32). In the presence of three

sources the hive selects the source with the highest

value and allocates all its foragers to it. If two of the

three sources have the same higher value, the hive

distributes its foragers among these two higher val-

ued sources, completely abandoning the third.

7



5. Experimental Veri�cation

The set of m equations (14) can be numerically in-

tegrated for any initial distribution (a

10

; a

20

; :::; a

m0

),

and any set of input-parameters x

i

; y

i

. The input-

parameters and initial distribution are obtained from

controlled experiments (Seeley 1995). In sub-section (5.1)

we use the input-parameters measured in Seeley et.

al (1991) and show that the initial distribution of

(11; 11) individuals between two sources with widely

di�ering values evolves to a steady state distribution

where the hive abandons the lesser valued source,

which is also less pro�table. In sub-section (5.2)

we use the data from the experiment described in

Bartholdi et. al. (1993), where the hive distributes

its foragers between two equal valued sources with dif-

fering pro�tabilities. The evolution and steady state

values are accurately described by the modi�ed SCS

model.

5.1. The Seeley et al. Experiment

In the Seeley et al. (1991) experiment two equidis-

tant sucrose solution feeders are identical except for

their sucrose concentrations; one contains a 2:5mol/L

solution and the second a 0:75mol/L solution. The

�rst source is more pro�table. The initial distribu-

tion of foragers (11; 11) is shown to evolve (�gure 1 of

Seeley et al. 1991; �gure 5.34 of Seeley 1995) wherein

the number of foragers at the �rst source increases

rapidly and that at the second falls. At the end of

4 hours the concentrations are switched, making the

�rst source less pro�table. Immediately, the foragers

at the �rst source drop and the foragers at the second

source rise to a maximum value of roughly 125.

The input-parameters needed are given in table (5.3)

of Seeley (1995). In our notation, in the �rst half of

the experiment the input-parameters (f

i

x

; f

i

d

; �

i

; p

ai

; p

di

)

for the �rst source are (0; 1; 0:38; 1=2:5;1=1:5), and

the second source are (0:04; 0:15;0:02;1=3:5;1=2); where

the rates p are in min

�1

. Since the initial total num-

ber of foragers N

�

= 22 increases to about 130 at

the end of the experiment in 8hr, we use an expo-

nentially growing N with N

tot

= 225 with a growth

rate of k = 0:095 described by the equation (8). The

parameters N

tot

and k can be chosen di�erently as

long as N

tot

is equal to the experimental value at the

end each phase of the experiment; N

tot

(t = 4hr) = 86

and N

tot

(t = 8hr) = 130. The time evolution of the

distribution (a

1

; a

2

) can be obtained either by nu-

merically solving the di�erential equation (14) with

Fig. 2.| The modi�ed SCS model describes the evo-

lution of the forager distribution in the experiment of

Seeley et al. 1991, where the foragers converge to the

�rst source with the highest value (dotted line) and

abandon the second (dashed line). At the end of 4

hours, when the concentration of the sucrose solution

is switched between the two sources, making the �rst

source lower valued, the number at the �rst source

rapidly drops to 6 individuals and the second source

is selected by the hive where 124 individuals converge

at the end of 8hr. The solid line shows the evolution

of the total number of foragers N . The evolution of

the distribution matches the experimental results in

�gure (3) of Camazine & Sneyd (1991).

the input-parameters, or numerically solving for a

1

in equation (19) for the values of � and � obtained

from the input parameters. The computed evolution

of (a

1

; a

2

) is plotted in �gure (2); dotted line denotes

a

1

, dashed line shows a

2

, and solid line is N . From

equation (15), the value of the �rst source is 1. To

avoid in�nities in the numerical calculations we keep

f

1

x

not exactly zero, but very close to zero, at 10

�6

,

and f

1

d

not at 1, but close to 1, at 0:999999. Hence,

v

1

= 158:2 is very large compared to v

2

= 4 � 10

�5

.

The values of � = 2:9� 10

4

and � = 7:2� 10

�3

. The

hive selects the �rst source, and a

1

increases rapidly

while the a

2

approaches zero. At the end of 4hr the

input parameters for the two sources are switched and

the evolution of the distribution computed. The bees

quickly adjust in a way that a

1

is rapidly depleted to

8



6 individuals and the foragers at the second source

increase to a maximum of 124. The evolution of the

distribution is accurately described by the modi�ed

SCS model.

5.2. The Bartholdi et al. Experiment

Here we use the data from Bartholdi et al. (1993)

and show how the bees distribute the foragers be-

tween the two nectar sources whose values are equal,

though their pro�tabilities are di�erent. The mean

initial distribution of (10; 10) foragers was noted to

evolve to a �nal mean steady state forager distribu-

tion of (20:9� 0:8; 39:0� 2:2). We �rst show that the

parameters in Bartholdi et al (1993) map onto the

parameters of the modi�ed SCS model, and hence on

to our de�nition of the value. The values of the two

sources monitored are 0:70 and 0:84, almost identi-

cal. We trace the evolution of the distribution in two

di�erent cases: (i) when the assumption that there

are only two nectar sources available in the �eld, and

(ii) when there are an arbitrary number of nectar

sources all with values much smaller than the moni-

tored sources. Both these cases accurately reproduce

the steady state distribution of the Bartholdi et al.

experiment.

In section (3) we showed that when only two nectar

sources with equal values v

1

= v

2

are present in the

�eld the evolution of the distribution for � = � = 2

follows equation (23), and the asymptotic value of

the distribution given by equation (24). When a

10

=

a

20

= 10 and the asymptotic value of N

tot

= 60,

the steady state distribution is (20; 40), very close

to the experimental values. Figure (1) shows that

when � = � = 1:84 the exact experimental results

can be obtained. At � = � = 1:84 the steady state

distribution in �gure (1) is (20:96; 39:04). We shall

now, estimate � and � (or more precisely, the input-

parameters x

1

; x

2

; y

1

; y

2

), from the observations.

In the notation of Bartholdi et al. (1993) f

x

�

f

i

x

p

ai

of our notation, is the per capita abandonment

from source x � imeasured in abandonments/bee/hr,

n

x

� a

i

is the number of bees foraging at the ith

source and g

x

� �

i

=(t

ui

p

di

) is the dance duration for

source i, measured in dance circuits/return; t

u

is the

time per dance circuit. The returning rate of bees

from the source i is r

x

� p

ai

a

i

, and the return time

T

x

� 1=p

ai

. If the choosing probability f

i

f

is de�ned

Fig. 3.| The initial distribution of foragers with

(a

10

; a

20

) � (10; 10) is allowed to evolve for a two

source model whose values are given by the experi-

mental values in Table 1 of Bartholdi et al. (1993);

v

1

= 0:70 and v

2

= 0:84, with � = 1:58 and � = 1:89.

The dotted line traces the evolution of a

1

, dashed line

that of a

2

and solid line ofN which rises fromN

�

= 20

to N

tot

= 60. The forager distribution at 4 hrs is

(20:42; 39:57), accurately matches the Bartholdi et

al. experiment. The hive distributes its foragers be-

tween the two almost equal valued sources. Twice the

number of foragers forage at the second source whose

x�value is twice that of the �rst.

di�erently from equation (5) as

f

i

f

=

g

x

r

x

P

m

x=1

g

x

r

x

�

�

i

p

ai

a

i

=(t

ui

p

di

)

P

m

j=1

�

j

p

aj

a

j

=(t

uj

p

dj

)

; (35)

then x

i

= �

i

p

ai

=(t

ui

p

di

) instead of x

i

= �

i

f

i

d

(1 �

f

i

x

)(p

ai

=p

di

) of equation (12). In the Bartholdi et al.

(1993) de�nition of f

i

f

(equation 35) and notation, the

equal value translates to

v

i

=

g

x

f

x

T

x

�

�

i

f

i

x

t

ui

p

di

; (36)

and the experimental values of their Table 2 yields

v

1

= 18:4 and v

2

= 22:0.

The choosing probability in equation (12), on the

other hand, provides the value according to our def-

inition as in equation (15). Table 2 of Bartholdi

9



Fig. 4.| The experimental values in Table 1 of

Bartholdi et al. (1993) are used as input-parameters

along with a �ctitious nectar source a

3

with its pa-

rameters x

1

= 0:1x

2

and y

1

= 100y

2

, so that

v

3

= 0:001v

1

, and v

1

= 0:7 � v

2

= 0:84.

The set of equations (14) are solved numerically.

The solutions depict how the number of foragers at

each source evolve from the initial distribution of

(a

10

; a

20

; a

30

) � (10; 10; 40) to the steady state distri-

bution of (20:42; 39:57;0). Solid line shows a

3

which

is abandoned because its value is small compared to

the �rst two sources, dotted line is a

2

and dashed

line is a

3

, where all the foragers eventually distribute

themselves with a

2

> a

1

because x

2

> x

1

.

et al. (1993) supplies the input-parameters �

1

=

0:073t

u1

p

d1

, �

2

= 0:117t

u2

p

d2

, p

a1

= 1=0:165 hr

�1

,

p

a2

= 1=0:140 hr

�1

, f

1

x

= 0:024 � 0:165, and f

2

x

=

0:038�0:140. The values of the duration of each dance

circuit t

ui

are obtained by obtaining a least squares �t

to the data in Table (13) of von Frisch (1967). The

two sources are equidistant at 350m from the hive,

the least squares �t gives t

u1

= t

u2

= 2:3s. We make

one reasonable assumption, that all the foragers that

do not abandon the source, dance for it, instead of

returning to the source without dancing. In other

words, f

i

d

= 1. The values of the two sources turn

out to be v

1

= 0:70 and v

2

= 0:84. The value derived

directly from the modi�ed SCS model di�er from the

equal value of the Bartholdi et al. de�nition, but the

ratio v

1

=v

2

are the same in both de�nitions.

Fig. 5.| The exercise in �gure (4) is re-

peated for 10 sources where the �rst 2 sources

have the experimental values of Bartholdi et al.

(1993) the remaining sources have x

i

= 0:1x

1

,

y

i

= 100y

1

, for i = 3; 4; :::;10. The initial

distribution of (10; 10; 15; 2;2;2; 3; 4;5;7) evolves to

(20:42; 39:57;0;0; 0; 0;0;0;0; 0). The hive abandons

all the sources with smaller value and distributes all

its foragers between the two sources with equal and

maximum values.

The values are not identical, but are almost equal.

We shall see that the modi�ed SCS model accurately

describes the �nal distribution of foragers. The input-

parameters estimated as above give x

1

= 0:0169,

x

2

= 0:0319, y

1

= 0:024 and y

2

= 0:038, with � =

1:58 approximately equal to � = 1:89. Solving equa-

tion (19) with the initial values of (a

10

; a

20

) � (10; 10)

and N evolving as equation (8) with k = 2 so that

N

�

= 20 evolves to the asymptotic value of 60 in 4hr,

yields the dotted curve for a

1

and dashed curve for

a

2

in �gure (3). The distribution at 4hr is given by

(20:42; 39:57). The experimental values of Bartholdi

et al. (1993) are accurately reproduced by the modi-

�ed SCS model.

The two nectar source model yields the �nal dis-

tribution when the total number of available foragers

increases from an initial value N

�

= 20 to N

tot

= 60

within roughly an hour or two. However, with an ar-

bitrary number of sources in the �eld the total num-

ber of available foragers could either follow the evolu-
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tion above, or can be constant at N

�

= N

tot

= 60.

In either case, the observed steady state distribu-

tion is obtained if the value of all other available

sources are smaller than the two experimental sources;

v

i

<< 0:70; 8i 6= 1; 2.

For 3 sources, let the third source have x

3

= 0:1x

1

,

y

3

= 100y

1

, giving v

3

= 0:001v

1

. We numerically

solve the set of di�erential equations (14) with the ini-

tial distribution (10; 10; 40) and a constant N = N

�

=

60 to get the evolution of the distribution as shown in

�gure (4); dotted line is a

1

, dashed line is a

2

, and solid

line is a

3

. The foragers abandon source 3 leaving all

the 60 foragers to distribute themselves between the

�rst two sources with exactly the same distribution

as for the two nectar source model (20:42; 39:57;0).

This exercise can be done for any number of nec-

tar sources. Figure (5) shows a 10 source model with

the initial distribution of (10; 10; 15; 2;2;2;3; 4; 5;7)

evolves to (20:42; 39:57; 0; 0;0;0;0; 0; 0;0), when x

i

=

0:1x

1

, y

i

= 100y

1

for i = 3; 4; :::10, so that v

i

<<

v

1

; v

2

for i � 3. The bees choose the source with the

maximum value, and in the process if the maximum

value is equal for a number of di�erent sources, they

distribute themselves between the maximum equal

valued sources.

6. Cross-Inhibition Between Forager Groups

The parameters that the value depends on could

vary with time, making the value time-dependent. In

such a case the colony adjusts the forager allocation

in real time between the various food sources. Such a

mechanism has been shown experimentally in Seeley

(1995). This mechanism by which the hive achieves

an increase in the number of foragers at the nectar

site which has increased its pro�tability by decreasing

the foragers at another less pro�table source is called

cross-inhibition (section 5.13 of Seeley 1995). In the

Seeley (1995) experiment, two identical sucrose feed-

ers were placed equidistant from a colony. For almost

2:5hr essentially equal number of bees visited the two

locations. At the end of 2:5hr when one source is

replaced by twice the concentration of sucrose solu-

tion, the number of foragers quickly increased from

25 bees to approximately 67 bees, while suppressing

the number at the second source from 25 to roughly

6 bees.

The modi�ed SCS model can describe the evolu-

tion shown in �gure (5.35) of Seeley (1995). Since

the input-parameters are not available we use some

Fig. 6.| Two equal valued sources are visited by

an almost equal number of foragers, as shown by the

dotted line for the �rst source and dashed line for

the second; solid line shows the total number. At the

end of 2:5 hours when the value of the �rst source is

doubled the hive quickly adjusts its forager distribu-

tion by increasing the number at the �rst source and

simultaneously decreasing the number at the second

source. Thus cross-inhibition is a natural extension

of self-organization through the modi�ed SCS model.

typical values as parameters �, �, and y

1

. The initial

distribution in lower �gure (5.35) of Seeley (1995) is

(15; 18). The sources are identical and equidistant in

the �rst phase of the experiment, hence the values of

the sources are equal and � should be equal to �; we

choose � = � = 1. We then take typical values of f

1

x

to be 0:1 and p

a1

= 1:=2:5min

�1

, to get y

1

= 0:04.

The initial total number of foragers N

�

= 33 asymp-

totically approaches a value of roughly 60 (�gure 5.35

Seeley 1995) in the �rst phase of the experiment, so

we let N vary according to equation (8) with k = 1:5

so that N increases from 33 to 60 within the 2:5hr

of the �rst phase of the experiment. This is a two

nectar source model and the solutions are given by

equation (19). The solutions are computed and plot-

ted in �gure (6). The dotted line is a

1

, dashed line

is a

2

and solid line is N . The number of foragers are

close to each other and hover around 25� 30 foragers

at the end of 2:5hr.
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In the second phase of the experiment, the sucrose

concentration of the �rst source was doubled. Though

we do not know the exact functional dependence of

the abandonment probability f

x

on pro�tability, we

know it must decrease f

x

, hence we naively assume

that f

1

x

= 0:05; half its original value of 0:1. This

doubles � = f

2

x

p

a2

=f

1

x

p

a1

. The total number of for-

agers in the experiment which is at 60 in the begin-

ning of the second phase increases to 73. Hence, with

N

�

= 60 and N

tot

= 73 we solve for a

1

and plot the

forager distribution for the second half of the exper-

iment. When the value of the �rst source is doubled

the hive increases the foragers at the higher valued

source to roughly 69 foragers and simultaneously de-

creases the foragers at the second source to 4. Cross-

inhibition is a natural extension of the source selection

and forager distribution of self-organization, through

the modi�ed SCS model.

7. Discussion

Bees collectively decide on the selection of the nec-

tar sources and the distribution of foragers among

them. This coordinated activity among several thou-

sand bees is achieved without any central author-

ity. Each individual bee follows a set of simple rules

based on a set of parameters that she can measure.

We shall call these parameters the source-parameters

(s

1

; s

2

; :::; s

p

) and the forage context-parameters (c

1

; c

2

; :::; c

q

)

(�gure 5.22 of Seeley 1995). For instance, a few of the

source-parameters include the location of the source,

sugar content of the nectar, and travel time to the

source. Some of the context-parameters are the nec-

tar in
ux, weather, and time of the day. The source

parameters instruct the forager about the pro�tabil-

ity of the source, whose knowledge is solely con�ned

to the forager (Seeley et al. 1991). The foragers de-

rive quantities like the threshold pro�tability from the

context-parameters (Seeley 1994).

Loaded with knowledge and nectar from the food

source, the forager returns to the hive. Among the

source-parameters, the coordinates of the source are

known to be directly communicated by the dancer

to a few follower bees through the waggle dance.

Pro�tability of the source is known to be indirectly

communicated by modulation of the dance duration

(von Frisch 1967, Seeley 1994); the dance duration

increases linearly with the pro�tability of the source.

The followers do not compare the dances, neither

does each forager directly compare the alternative

nectar sources, nor does each food-storer bee that

unloads the nectar from the forager acquire enough

information of the pro�tability of the various sources

to transmit any knowledge to the foragers (Seeley &

Towne 1992). The lack of direct communication of

the pro�tability leaves the individual foragers poorly

informed. Yet, an intelligent colony emerges out of

a collection of these poorly informed individuals and

the colony of bees selectively exploits the most prof-

itable among the food sources (Butler 1945, Weaver

1979, Visscher & Seeley 1982, Seeley 1986, Seeley et

al. 1991).

The SCS model shows that the colony achieves

this selection through the process of self-organization.

The selection of the source by an unemployed forager

is mediated by a probabilistic event on the following


oor. A chance encounter of a follower with a dancer

sends her o� to the source whose coordinates she has

just read. The probability of these chance encounters

with dancers whose source is the most pro�table is the

largest, because this dancer happens to spend more

time advertising for her source (Seeley 1994). This re-

cruitment to the most pro�table source is a runaway

process, because the encounter probability increases

as the number of dancers advertising for the most

pro�table source increase, and whose dancers have

increased because the number of followers recruited

to the source have increased through the larger dance

duration. Thereby, the colony collectively achieves

the process of selection of the most pro�table source,

which the poorly informed individual is incapable to

perform.

The pro�tability is not the sole criterion of source

selection. The Bartholdi et al (1993) experiment

shows that the hive distributes its foragers among two

nectar sources with di�erent pro�tabilities. They the-

oretically show that the criterion is a quantity, they

call, the `equal value'. They claim that the colony

converges to the `equal value' for each source available

in the �eld, and their theoretical proofs demonstrate

that there is no other allocation that is more than

twice as e�ective than the allocation that emerges

from an equal value among all sources. In e�ect, the

hive selects all sources in the �eld and distributes a

non-zero number of foragers between them.

The con
icting results in the Seeley et al. (1991)

and Bartholdi et al. (1993), converge in the modi�ed

SCS model, which successfully explains both exper-

iments. The colony selects a subset of the available

sources based on a quantity, which we have called the
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`value' of the source, and not solely through the prof-

itability. Apart from the di�erence in the functional

dependence on the input parameters, our source value

di�ers from the Bartholdi et al. `equal value', in a sig-

ni�cant way: the colony does not converge onto the

`value', but each individual forager independently de-

termines the value of her source which remains time-

independent. Hence, the colony does not select all

sources but a subset of sources that have the maxi-

mum values which are equal. The forager distribution

among these maximum equal valued sources is very

e�ective as shown by the elegant theoretical proof in

Bartholdi et al. (1993).

The modi�ed SCS model uni�es the SCS model

with the Bartholdi et al (1993) model and describe

the source selection and forager distribution by the

colony. The modi�cation through the `no-accumulation

hypothesis' reduces the 3m + 1 coupled di�erential

equations in the SCS model to m. This drastic sim-

pli�cation leads to analytic solutions of the modi�ed

SCS model and thus further reveals the mechanism

that drives the collective decision making process.

The modi�ed SCS model shows that pro�tability is

not the principle criterion by which the bees select the

sources but a quantity called the `value' of the source.

The value of a source (equation 15) is a function of

4 input-parameters (f

x

; f

d

; �; p

d

), which in turn must

depend solely on the source and context-parameters,

including the pro�tability. A forager determines the

value of the source through an internal gauge and in-

directly communicates the pro�tability through the

dance duration � . Not � alone, but, the total time

she spends on the dance 
oor T

d

, and the probability

through which she abandons her source f

x

, or dances

for it f

d

, crucially a�ect the selection process. As a

result, nectar sources with di�erent pro�tabilities can

be selected as in the Bartholdi et al. (1993) experi-

ment, because the the value gauge of the bees yields

an equal value to the two sources.

Once the forager determines the input-parameters

she has individually estimated the value of her source,

whose knowledge is in her sole possession. Through

her decision whether to dance or abandon the source,

through the duration she would want to spend on the

dance 
oor, and through the fraction of that time she

would dance, she contributes to the collective deci-

sion making so that her colony deploys the right num-

ber of foragers to survive and maintain its prosperity.

The value gauge carried by each bee, is in essence, a

master gauge with sub-units. The sub-units are the

abandonment probability gauge, the dancing prob-

ability gauge, dance duration gauge and the dance


oor time gauge. The dance duration gauge is known

to be a linear function of source pro�tability (See-

ley 1994). Future experiments would tell us how the

other sub-units depend on the source and context pa-

rameters. Knowing this functional dependence of the

rest of the sub-units is to know the exact `simple be-

havioral rules' followed by each individual that shapes

the self-organization process. This would tell us why

the colony distributes all foragers among a subset of

sources chosen by their maximum equal value. The

knowledge of all the gauges would allow us to predict

the evolution of the distribution of foragers among the


ower patches for a given hive, through the modi�ed

SCS model.
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